Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Sci ; 113(4): 1094-1112, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38220087

RESUMO

The well-stirred model (WSM) incorporating the fraction of unbound drug (fu) to account for the effect of plasma binding on intrinsic clearance has been widely used for predicting hepatic clearance under the assumption that drug protein binding reaches equilibrium instantaneously. Our theoretical analysis reveals that the effect of protein binding on intrinsic clearance is better accounted for with the dynamic free fraction (fD), a measure of drug protein binding affinity, which leads to a putative dynamic well-stirred model (dWSM) without the instantaneous equilibrium assumption. Using recombinant CYP3A4 as the in vitro clearance system, we demonstrate that the binding effect of albumin on the intrinsic clearance of both highly bound midazolam and highly free verapamil is fully corrected by their corresponding fD values, respectively. On the other hand, fu only corrects the binding effect of albumin on the intrinsic clearance of verapamil, and yields severe over-correction of the intrinsic clearance of midazolam. The results suggest that the traditional WSM is suitable for highly free drugs like verapamil but not necessarily for highly bound drugs such as midazolam due to the violation of the instantaneous equilibrium assumption or under-estimating the true free drug concentration. In comparison, the dWSM incorporating fD holds true as long as drug elimination follows steady-state kinetics, and hence, it is more broadly applicable to drugs with different protein binding characteristics. Here we demonstrate with 36 diverse drugs, that the dWSM significantly improves the accuracy of predicting human hepatic clearance and liver extraction ratio from in vitro microsomal clearance data, highlighting the importance of drug plasma protein binding kinetics in addressing the under-prediction of hepatic clearance by the WSM.


Assuntos
Midazolam , Modelos Biológicos , Humanos , Midazolam/metabolismo , Fígado/metabolismo , Ligação Proteica , Albuminas/metabolismo , Verapamil , Taxa de Depuração Metabólica , Preparações Farmacêuticas/metabolismo , Hepatócitos/metabolismo
2.
Anal Chem ; 95(8): 4086-4094, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36791153

RESUMO

Determination of drug binding kinetics in plasma is important yet extremely challenging. Accordingly, we introduce "dynamic free fraction" as a new binding parameter describing drug-protein binding kinetics. We demonstrate theoretically and experimentally that the dynamic free fraction can be determined by coupling the drug binding assay with a reporter enzyme in combination with high-resolution mass spectrometry measuring the relative initial steady-state rates of enzymatic reactions in the absence and presence of matrix proteins. This novel and simple methodology circumvents a long-standing challenge inherent in existing methods for determining binding kinetics constants, such as kon and koff, and enables assessment of the impact of protein binding kinetics on pharmaceutical properties of drugs. As demonstrated with nine model drugs, the predicted liver extraction ratio, a measure of efficiency of drug removal by the liver, correlates significantly better to the observed extraction ratio when using the dynamic free fraction (fD) in place of the unbound fraction (fu) of the drug in plasma. Similarly, the in vivo hepatic clearance of these drugs, a measure of liver drug elimination, is highly comparable to the clearance values calculated with the dynamic free fraction (fD), which is markedly better than those calculated with the unbound fraction (fu). In contrast to the prevailing view, these results indicate that protein binding kinetics is an important pharmacokinetic property of a drug. As plasma protein binding is one of the most important drug properties, this new methodology may represent a breakthrough and could have a real impact on the field.


Assuntos
Proteínas Sanguíneas , Fígado , Ligação Proteica , Proteínas Sanguíneas/metabolismo , Fígado/metabolismo , Plasma/metabolismo , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...